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ABSTRACT
Let X be a Banach space which isn’t reflexive but has a separable dual.
Then X admits a smooth norm so that the set of norm-attaining functionals
is a complete analytic set. A variant of Asplund’s average norms is used.

Introduction

Let X be a separable Banach space with norm |- |; NA, or NA(| - |), is the set
of linear functionals on X which attain their norm on the closed sphere of X;
and NA; is the intersection of NA with the sphere of X*. It is proved in [5]
that if X isn’t reflexive, then X admits an equivalent norm such that N A isn’t a
Borel set (for the metric topology of X*) and in [2] this is accomplished with-a
Gateaux-smooth norm. Neither of these offers any clues about épaces admitting
a Fréchet-smooth (F-smooth) norm. We prove that N A fails to be a Borel set in
a very definite way, with a smooth norm.

THEOREM: Let X be a non-reflexive Banach space and admit an F-smooth norm.
Then there is an equivalent F-smooth norm with this property: whenever N is a

Polish space and A an analytic set in N, there is a continuous map ¢ of N into
X* such that A = ¢~} (N A;).

In spite of a formal similarity between Fréchet-smoothness and Gateaux-
smoothness, the former is much more difficult to attain in re-norming, and usually
has to be approached through a dual norm on X*. A separable space admits an
F-smooth norm if and only if X* is separable [Kadec; cf. 3, pp. 44-51], and then
X admits a norm whose dual is LUR : ||z*|| = 1, ||lz}|| = 1, lim |jz* + z}|| = 2
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implies limz, = z 3, p. 42]. When the dual norm is LUR, then the norm is
F-smooth [3, p. 43] and the main theorem relies on this observation.

Matters are much simpler in a special case: X contains a direct sum Y; ®Y5 in
which dimY; = +o00 and Y is non-reflexive. Since this isn’t true in general (for
example in spaces which are hereditarily indecomposable [4]), we use a substitute:
there is a set M, homeomorphic to the Hilbert cube, such that |m + ya| > |m|
for each m € M and y2 € Y3 and the function |m + y2| has a strong minimum at
yo = 0. This has to be combined with further properties of the norm, a process
accomplished by the category method [3, p. 52] a variant of the “averaged norms”
of Asplund [1].

In the final step towards finding the norm || - ||, and verifying that certain
functionals do not belong to N A for this norm, we use the presence of a certain
kind of closed, convex set found only in non-reflexive spaces. This follows {3],
but derives from James’ theorem on N A.

1. Let f(u) = (1—14?)/4, 0 < u < 1. We use this function to form a sum of
Banach spaces Z; and Z, with some properties of the #2-sum. We define

|(z1, 22)|" = maxu|z1| + f(u)|zz], 0<u<1.

A linear functional has norm at most 1 if |2]| < u and |23] < f(u) for some u in
[0,1]. More generally let K be the closed, convex set in R? defined by 0 < u < 1,
0 € v < f(u): then (27, 23) has norm at most 1 provided (|z]], |25|) € K. Since K
is convex, the separation theorem shows that (|z{|,|23|) € K is necessary as well
as sufficient. We observe next that when |23| < f(]2{|) then |2}] < 1 and there is
some t > 1 such that t|z5| < f(¢]2]) so (2], 2}) has norm < ¢t7! < 1. Hence the
unit sphere of the dual space is defined by the conditions |2{| < 1, |23| = f(|2}]).

Clearly |(21,22)'| 2 |z1]- When 2|z;| > |23] then ulz1| + f(u)|22] is non-
decreasing on [0,1] and |(21, 22)|" = |21|- Suppose now that 2§ and 23 are LUR.
From our identification of the unit ball of the dual space of Z; @ Zs with the
norm | - |, we see that it too is LUR, since f is strictly concave on [0,1]. From
this we see that the same is true of W*, W being any subspace of Z; & Z,; we
observe that the canonical quotient mapping of (Z; @ Z)* onto W* maps the
closed unit ball of the first space onto that of the second.

We apply this as follows. Let Y be a closed subspace of X, of infinite codi-
mension, and | - | a norm on X, whose dual is LUR. We set Z; = X/Y with
the quotient norm (written with the same notation) so that Z7 is LUR. Let 7
be the projection of X on X/Y, and let W be the closed subspace of X/Y & X
consisting of all elements (w(z),z). Clearly W is isomorphic to X, with norm
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equal to |z|; = supu|n(z)| + f(u)-|z|. Besides the two inequalities on this norm
written above, we observe that |7(z)|; = |7(z)|. (These are quotient norms on
X/Y.) In fact, from |z|; > |n(z)| we find |w(z)|y > |r(z)]. When w(z) # 0
choose y € Y so that |z + y| < 2|n(z)|; then |z + yl; = |v(z + )| = |n(z)|,
proving our assertion.

We now add the requirement that the quotient norm of |-| in X/Y be LUR to
our previous requirement on X*. This can be done by the category method (3,
p. 52], which we shall illustrate later in a more complicated situation. To use the
category method we need to know that X/Y admits at least one LUR norm [3,

p. 42]. Of course the norm induced by |-|; is LUR in X/Y since |n(z)|; = |n(z)|.

2.  We shall now construct a set M, homeomorphic to the Hilbert cube, such
that 7 is a homeomorphism on M into X/Y, and |m|; = | (m)]; for every element
m of M. Let (ux)$° be a normalized basic sequence in X/Y', and let ux = m(zx);
this is possible because X/Y has infinite dimension. Since |7(zx)| = |7 (k)]s =1
for each k, we can adjust z; so that |zx| < 4/3.

Let M be the set of all sums z; + X$°ckxy, with |cz| < 37F. We note that
distinct elements of M aren’t proportional modulo Y, because all begin with z;.
The elements of M satisfy |x(m)| > |w(m)|; > 1—1/6 and || < 7/6-4/3 < 5/3.
Since || < 2|n(m)| then |7(m)|; = |m|1; we obtain M by mapping an element
i to ||7t - m; so that M and M are homeomorphic. We observe that m(M)
doesn’t meet its negative —n(M).

When m € M and y € Y then |m + ty|; = 1 for small ¢. This would interfere
with a later step in our argument, so it must be removed by an intermediate
re-norming. This entails an application of the category method, and is the most
intricate part of the theorem. We denote by J the duality mapping on X, using
the norm | - |;. Since the norm in X* is LUR, the mapping J is norm-to-norm
continuous, except at 0 in X. When z € M, then J(z) € Y. We now see
that when m; and m; belong to M and m # may, then |{(J(m1),m3)| < 1. For
w(my) # £m(mg), the norm in X/Y is rotund.

LEMMA (a): For each € in (0,1), there is a number r > 0 with this property.
Whenever m € M, y € Y, and |y;| = ¢, then there is a linear functional f, of
norm < 2, such that |f| <1on M, and f(m+y) >1+r.

Proof: Since (J(m),y) = 0 the distance from y to Rm is at least ¢/2. Hence there
is a linear functional g, such that g(y) > ¢/2, g(m) =0, and |g]; < 1. Let 0 > 0
be so small that |(J(z), m)| < 1—o whenever x,m € M and |z—m|; > €/4. (Here
we use the compactness of M, continuity of J, and the observation preceding the
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Lemma.) We remark that o depends only on e. We set f = (1 —o¢/4)J(m)+o0g
so that f(m+y) > 1—o0€/4+0€/2 =1+0¢/4. When z € M and |f(z)| > 1 then
[{(J(m),z)| > 1—0, whence |[z—m|; < €/4. Therefore |f(z)| < 1—ce/4+0€/4 = 1,
a contradiction. Moreover |f]; < 1+ ¢ < 2; thus we can choose r = oe/4. 1

LEMMA (b): There exists a norm | - |2 on X such that:
(1) |z < |z|2 < 2|z|y for all z in X.
(ii) |m|e =1 for each m in M.
(iii) The dual norm is LUR.
-(iv) For each € in (0,1) there is some 6(¢) > 0 so that |m + y|lz > 1 + 6(¢)
whenever m € M, y € Y, |y|1 = ¢. Here 0 is allowed to depend on € and
the norm | - [2.

Proof: In this lemma it will be convenient to denote norms by p, and |- |; by p;.
We denote by A the set of norms p such that p; <p<2p;andp=1on M. Ais
a complete metric space with the metric p defined by p(p, q) = sup{|p(z) — ¢(z)|:
|z|1 < 1}. In the set A there is a largest norm, defined by the unit ball of its dual
space: g(z*) < 1if and only if |z*| <1 on M and |z*| < 2 on B(X,| - |1). We
define sequences (Uy)$° and (V,,)$° of dense open sets in A, and apply Baire’s
Theorem.

We say that p € U, if there is a number a,, > 0 such that p(m +y) > 1+ a,
whenever m € M, y € Y, and |y|l; = 1/n. Clearly U, is open because the
elements m + y in question have norm at most 2. Lemma (a) shows that the
extremal norm g belongs to each U,, because |f| < ¢ is valid for every functional
f obtained there. Now imN~'p+(1-~N-Y)p=pand N~lp+(1-N"Ype U,
whenever N > 1, n > 1 (and each convex combination belongs to A). The set
N;° U, = H, say, is a dense Gs in A, and all the norms in H have property (iv).

The definition of V,, is more complicated. We say p € V,, if there is some
N > n, and norms q1,q» in A such that p(p,q;) < N~2 and the dual norms
satisfy the identities q;(z*)2 = N~ 1pi(z*)? + (1 — N~ 1)go(z*)2. Clearly V;, is
open, and G = ﬂ‘lx’ V,, contains only norms whose duals are LUR because p;
has that property [3, p. 53]. When p € A and gy is defined by gn(z*)? =
N=1pi(z*)? + (1 — N~1)p(z*)?, we find that limgy = p and gy can take the
place of q;. However, we have to verify that each gn € A; the inequality p; <
gnv < 2p; is equivalent with p}/2 < g < pi, and this is a consequence of the
corresponding inequalities on p; and p. To verify that gv < 1 on M, we show
that in general gy (z) < max(p;(z),p(z)). From Cauchy’s inequality we conclude
gn(z*) > N7 py(z*) + (1= N~1)p(z*). The norm on the right is abbreviated by
p. Then for all z in X* we have |z*(z)| < p(z*) max(p;(z), p(z)), and therefore
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gn(z) < max(p1(z), p(x)). Thus the sequence gn, which converges to p, remains
in A, and each set V,, is dense in A. Any norm in G N H serves for Lemma (b).

We can now prove that the elements of M are strongly exposed by the duality
(or tangent) functionals, in the new larger norm | - |2. Since |m|, = |jm|; =1 for
each m, and each norm is F-smooth, while | - |; < |- |2, the functional J(m) has
the same meaning for both norms. In particular J(m) has norm 1 for the smaller
norm. Suppose now that |z,|z < 1 and (J(m),2z,) = 1. Since J(m) € Y we
see that |m(m) + 7(2,)|1 — 2 and so by the properties of the norm |- |, in X/Y,
lim7(z,) = n(m) (and |7(2,)|1 <1). Thus 2, = m+y, +wn, where y, € Y and
limw,, = 0, whence |m + yn|2 < 14 |wp|z = 1+ o(1) and finally limy, = 0 (by
the Lemma) or lim z, = m. |

3. In the case that X isn’t reflexive, we can choose Y of infinite codimension,
and also nonreflexive, as follows. By a theorem of Pelczyniski [6], X contains a
bounded basic sequence (ux) such that f*(vi) = 1, f* being a certain bounded
linear functional. The bounded sequence (vx) has no weak accumulation point.
For if w were an accumulation point, it would be in the null-space of the biorthog-
onal functionals for the basis; thus w = 0, contradicting f*(w) = 1. Let ux = vk
and Y = sp(ux). Then X/Y has infinite dimension, since Y is in the null space
of infinitely many of the biorthogonal functionals, and these are linearly inde-
pendent elements of X*. Using the basic sequence (ux), we let P, be the usual
projections of Y and f¥ = f* — Py f*. Then the f; are uniformly bounded and
we have

fl:(uj) =0, 1<j5< k7

fiuj))=1, 1<k<j.

We introduce now the Baire null-space X, consisting of strictly increasing se-
quences ¢ = (ng)$° of natural numbers. We define h(c) = £°2 %y, , and recall
the following property of k {5]. Whenever S = (A;){° is a sequence of probability
measures in ¥, and the integrals [ hd); belong to a compact set in X, then the
sequence S is uniformly tight: for each € > 0 there is a compact set K = K/(¢)
such that A;(K) > 1 — € for all j. This is seen by applying the functionals fg
to the sequence [ hd);, and expressing the value as an integral [ fi(h(0))dA;.
We use the tightness to conclude that the closed convex hull of ~(X) consists of
integrals [ hd), where X is a probability measure in X.

Let u be a continuous map of ¥ onto a dense subset of M, and g = u+h. (More
details on « are presented below.) Now g has the same property as h, concerning
tightness, because the addition of & to u doesn’t affect the compactness.

The norm || - || is defined through its dual norm. We define p(z*) to be the
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supremum of |z*| over g(X) and then ||z*|| = p(z*) + |z*|2, so that || - || is indeed
a dual norm. To see that it is LUR, suppose that {|z*|| = 1, ||z}| = 1, and
lim ||z* + z}]] = 2. Since p is subadditive it follows that

lim |z, + z*|2 — |z)|2 — |z*|2 = 0.

Let t, be defined by |z} |2 = tnu|z*|2. Then lim |t 2} + z*|2 — tp|z)|2 — |2*|2 =0
and so limt,z}, = z*. Since ||z} || = ||z*|| = 1, lim¢, = 1 and lim 2}, = z*.

We study the norm-attaining properties of the functionals J(m), m € M;
here J(m) refers to the norm | - |3, but norm-attaining refers to the norm [f - ||
defined above. Now h(X) C Y, and so J(m) vanishes on h(X), while u(X) is
dense in M. Thus p(J(m)) = 1 and ||J(m)| = 2. Moreover each element
g(0) +u(o) = 2u(o) +h(o) has || - ||-norm at most 1, since |z*(g(o))| < p(z*) and
|z*(u{o))] < |z*|2- The value of J(m) on this element is 2(J(m), u(c)) (because
R(X) C Y); thus J(m) attains its norm if m = u(o) for some o, i.e. m € u(2).
‘We shall now embark on proving the converse implication, making critical use of
the special property of h.

First of all, we can find the unit ball of || - || from the bipolar theorem. It
consists of the closure of sums w+ z where w € co(£g(X)) and |z|2 < 1. Suppose
wy, + 2z, is a convergent sequence of such sums and that J(m) tends to 2 on
this sequence. Then (J(m),z,) — 1 so that z, =+ m. Therefore w = limw,
exists and (J{m),w) = 1. The value of J(m) at g(o) is (J(m),u(c)) and this is
at least 1/2 because M has diameter < 1/2. Each wy, is (formally) an integral
f g(o)dA,, where A, is a signed measure of variation at most 1. Our observation
on {J(m),g(o)) implies that the negative variation of A, must tend to 0, i.e.
An(X) — 1. Thus we can replace A, by a probability measure in the following.
Since lim w,, exists we see that the sequence ()\,) is uniformly tight, and has a
limit ), concentrated in £. But then w = [ g(o)d), and (J(m), g(c)) must attain
the value 1 on £, i.e. m € u(X). Thus we have found that J(m) is in N A for the
norm || - || if and only if m € u(Z).

4. The Hilbert cube @ contains a nowhere dense, compact subset ()1, home-
omorphic to Q itself. Let @2 be a subset of C|0,1] defined as follows: v € Q2
if 0 <v<1andu(s)—w(t)] <|s—t,0<s<t<1 Let A be the ana-
lytic subset of @3, consisting of functions having an irrational zero. We treat Q2
as a closed subset of ();; this is possible for any compact metric space. Then
B= AU (Q\Q:) and so B = u(X) with a continuous mapping u of ¥; clearly B
is dense in Q. We accept for a moment that A’ reduces any analytic set A by a
continuous map 1) into Q,. The mapping ¢ defined by ¢(t) = 1/2- J(¥(t)) then
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has the property that ¢~ }(NA) = ¢~ }(NA;) = A. In this assertion NA and
N A; refer to the norm || - ||, while J refers to the norm | - |5.

To explain the point left open about A, let N be a Polish space of diameter
< 1, let A be analytic in N, and A = 0(I), I the set of irrationals in (0,1). We
then define v(z,t) = 1/2inf{d(z,0(s))+]t—s| : s € I'}. Then the partial function
v(+, t) belongs to Q, for every z in N, and v(-,t) belongs to A’ — that is, vanishes
at an irrational — if and only if z € A. Moreover, v(z,t) is Lipschitz-continuous
in the variable z. This is the map ¢ on N into Q.
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