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ABSTRACT 

Let  X be a B a n a c h  space  wh ich  i sn ' t  reflexive b u t  has  a s e p a r a b l e  dua l .  

Then X admits a smooth norm so that the set of norm-attaining functionals 
is a complete analytic set. A variant of Asplund's average norms is used. 

I n t r o d u c t i o n  

Let  X be a separable  Banach  space with norm [. I; NA,  or N A ( [ .  [), is the  set 

of linear functionals  on X which a t t a in  their  norm on the closed sphere  of X;  

and NA1 is the intersection of N A  with the sphere of X*.  It  is proved in [5] 

tha t  if X isn ' t  reflexive, then  X admi t s  an equivalent norm such tha t  N A  isn ' t  a 

Borel set (for the  metr ic  topology of X*)  and in [2] this is accomplished wi th . a  

G f t e a u x - s m o o t h  norm. Nei ther  of these offers any clues abou t  spaces admi t t ing  

a Fr~chet -smooth  (F-smooth)  norm. We prove tha t  N A  fails to be  a Borel set in 

a very definite way, with a smoo th  norm. 

THEOREM: Let X be a non-reflexive Banach space and admit an F-smooth norm. 

Then there  is an equivalent F-smooth norm with this property: whenever N is a 

Polish space  and ,4 an analytic set in N,  there is a continuous map ~ of N into 

X* such that A = ( p - I ( N A I ) .  

In spite of a formal  s imilar i ty  between Fr6chet-smoothness  and  Gs  

smoothness ,  the  former  is much more  difficult to a t t a in  in re-norming,  and usually 

has to be  approached  th rough  a dual  norm on X*.  A separable  space admi t s  an 

F - smoo th  no rm if and  only if X* is separable  [Kadec; cf. 3, pp. 44-51], and  then  

X admi t s  a no rm whose dual  is L U R :  I[x*[[ = 1, [[x*[[ = 1, lim [Ix* + x*l[ = 2 
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implies limx,~ = x [3, p. 42]. When the dual norm is LUR, then the norm is 

F-smooth [3, p. 43] and the main theorem relies on this observation. 

Matters are much simpler in a special case: X contains a direct sum II1 @ Y2 in 

which dim ]I1 -- +oc and Y2 is non-reflexive. Since this isn't true in general (for 

example in spaces which are hereditarily indecomposable [4]), we use a substitute: 

there is a set M, homeomorphic to the Hilbert cube, such that  I m +  Y21 _> Iml 

for each m E M and y2 E Y2 and the function Im+y21 has a strong minimum at 

Y2 -- 0. This has to be combined with further properties of the norm, a process 

accomplished by the category method [3, p. 52] a variant of the "averaged norms" 

of Asplund [1]. 

In the final step towards finding the norm H" H, and verifying that  certain 

functionals do not belong to N A  for this norm, we use the presence of a certain 

kind of closed, convex set found only in non-reflexive spaces. This follows [3], 

but derives from James' theorem on NA. 

1. Let f(u) = (1 - u2)/4, 0 < u < 1. We use this function to form a sum of 

Banach spaces Z1 and Z2 with some properties of the ~2-sum. We define 

[(Zl,Z2)[' = maxulzl[ + f(u)]z2[, 0 < u < 1. 

A linear functional has norm at most 1 if [z~[ _< u and [z~[ < f(u) for some u in 

[0, 1]. More generally let K be the closed, convex set in R 2 defined by 0 < u < 1, 

0 < v < f (u) :  then (z~, z~) has norm at most 1 provided ([z~[, [z~[) E K.  Since K 

is convex, the separation theorem shows that ([z~[, [z][) C K is necessary as well 

as sufficient. We observe next that  when [z~[ < f([z~[) then [z~[ < 1 and there is 

some t > 1 such that  t[z~[ < f(t[z~D so (z~,z~) has norm ~ t - 1  < 1. Hence the 

unit sphere of the dual space is defined by the conditions [z~[ _< 1, [z]l = f([z~D. 

Clearly I(zi,z2)'[ > [Zl[. When 2[zll > Iz21 then U[Zl[ + f(u)[z2[ is non- 

decreasing on [0, 1] and I(Zl,Z2)l' = [zil. Suppose now that  z~ and z~ are LUR. 
From our identification of the unit ball of the dual space of Z1 (~ Z2 with the 

norm [ �9 I', we see that  it too is LUR, since f is strictly concave on [0, 1]. From 

this we see that  the same is true of W*, W being any subspace of Z1 @ Z2; we 

observe that  the canonical quotient mapping of (Z1 @ Z2)* onto W* maps the 

closed unit ball of the first space onto that  of the second. 

We apply this as follows. Let Y be a closed subspace of X, of infinite codi- 

mension, and l" [ a norm on X,  whose dual is LUR. We set Z1 = X / Y  with 

the quotient norm (written with the same notation) so that  Z~ is LUR. Let 

be the projection of X on X / Y ,  and let W be the closed subspace of X / Y  @ X 
consisting of all elements (~r(x),x). Clearly W is isomorphic to X,  with norm 
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equal to [x[1 = sup@r(x)[  + f (u) .  Ix[. Besides the two inequalities on this norm 

written above, we observe that  [lr(x)[1 = [lr(x)[. (These are quotient norms on 

X / Y . )  In fact, from Ix[1 >_ It(x)[ we find [Tr(x)[1 _> [Tr(x)[. When ~r(x) ~ 0 

choose y e Y so that ]x + y[ < 217r(x)[; then [x + Yll = [~r(x + y)[ = [Ir(x)l , 

proving our assertion. 

We now add the requirement that the quotient norm of [. [ in X / Y  be LUR to 

our previous requirement on X*. This can be done by the category method [3, 

p. 52], which we shall illustrate later in a more complicated situation. To use the 

category method we need to know that  X / Y  admits at least one LUR norm [3, 

p. 42]. Of course the norm induced by I" [1 is LUR in X / Y  since [r(x)[1 = ]~r(x)[. 

2. We shall now construct a set M, homeomorphic to the Hilbert cube, such 

that  lr is a homeomorphism on M into X / Y ,  and [m[1 = [~r(m)[1 for every element 

m of M. Let (uk)~ be a normalized basic sequence in X / Y ,  and let uk = ~r(Xk); 

this is possible because X / Y  has infinite dimension. Since [Tr(xk)[ = [r(xk)[1 = 1 

for each k, we can adjust xk so that [xk[ < 4/3. 

Let M be the set of all sums Xl + ~~ with [ck[ _< 3 -k. We note that  

distinct elements of M aren't  proportional modulo Y,  because all begin with Xl. 

The elements of M satisfy [Tr(rh)[ >_ br(rh)ll > 1 - 1/6 and [rh[ _< 7 /6 .4 /3  < 5/3. 

Since [Th I < 2[~r(rh)[ then [r(~h)]l = [7h[1; we obtain M by mapping an element 

rh to [rh[11 �9 rh; so that  M and M are homeomorphic. We observe that  ~r(M) 

doesn't meet its negative - r ( M ) .  

When m E M and y E Y then [m + ty[1 = 1 for small t. This would interfere 

with a later step in our argument, so it must be removed by an intermediate 

re-norming. This entails an application of the category method, and is the most 

intricate part of the theorem. We denote by J the duality mapping on X,  using 

the norm [-[1. Since the norm in X* is LUR, the mapping J is norm-to-norm 

continuous, except at 0 in X. When x E M, then J(x) E Y• We now see 

that  when ml and m2 belong to M and ml ~ m2, then [(J(ml),m2)[ < 1. For 

r(ml)  r 4-/r(m2), the norm in X / Y  is rotund. 

LEMMA (a): For each e in (0, 1), there is a number r > 0 with this property. 
Whenever m e M, y e Y,  and [Yl[ = e, then there is a linear functional f ,  of 

norm < 2, such that If[ <- 1 on M, and f ( m  + y) > 1 + r. 

Proof'. Since (J(m), y) = 0 the distance from y to Rm is at least e/2. Hence there 

is a linear functional g, such that g(y) >_ ~/2, g(m) = O, and Igll -< 1. Let a > 0 

be so small that  I(J(x), m)l < 1 - a  whenever x, m E M and Ix-roll > e/4. (Here 

we use the compactness of M, continuity of J ,  and the observation preceding the 
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Lemma.) We remark that a depends only on e. We set f -- (1 - ae /4)J (m)  § ag 

so that f ( m + y )  > 1 - a e / 4 + a e / 2  = l+ae /4 .  When x E M and If(x)[ > 1 then 

[(J(m),x)[ > l - a ,  whence [x-m[1 < el4. Therefore If(x)l < 1 - a e / 4 + a e / 4  = 1, 

a contradiction. Moreover Ifll < 1 + a < 2; thus we can choose r -- (re/4. I 

LEMMA (b): There exists a norm [. [2 on X such that: 

(i) Ixll < Ixl2 < 21 11 alz z in Z .  
(ii) [ml2 -- 1 for each m in M.  

(iii) The dual norm is LUR.  

(iv) For each e in (0, 1) there is some O(e) > 0 so that [m+ Y[2 ~ 1 q- 0(e) 

whenever m C M, y E Y, [y[1 = e. Here 0 is allowed to depend on e and 

the norm [. [2. 

Proof: In this lemma it will be convenient to denote norms by p, and [-[1 by Pl. 

We denote by A the set of norms p such that Pl _~ P _~ 2pl and p -- 1 on M. A is 

a complete metric space with the metric p defined by p(p, q) -- sup{ip(x) -q (x ) ] :  

Ix[1 _< 1}. In the set A there is a largest norm, defined by the unit ball of its dual 

space: q(x*) _< 1 if and only if [x*[ _< 1 on M and [x*[ _< 2 on B ( X , [ .  [1). We 
V, o~ define sequences (Un)~ and ( n)l of dense open sets in A, and apply Baire's 

Theorem. 

W e s a y  that p E Un if there is a number an > 0 such that p(m + y) >_ 1 + an 

whenever m E M, y E Y, and [Y[1 = 1/n. Clearly Un is open because the 

elements m q- y in question have norm at most 2. Lemma (a) shows that  the 

extremal norm q belongs to each Un because If[ _< q is valid for every functional 

f obtained there. Now lira N - X p +  ( 1 -  N - 1 ) p  = p and N - X p +  (1 - N - 1 ) p  C Un 

whenever N _> 1, n _> 1 (and each convex combination belongs to A). The set 

N 1  Un ---- H,  say, is a dense G~ in A, and all the norms in H have property (iv). 

The definition of V~ is more complicated. We say p E Vn if there is some 

N > n, and norms ql,q2 in A such that P(P, ql) < N-2  and the dual norms 

satisfy the identities ql(x*) 2 =- N - l p l ( x * )  2 + (1 - N-1)q2(x*) 2. Clearly Vn is 

open, and G = N ~  Vn contains only norms whose duals are L U R  because Pl 

has that  property [3, p. 53]. When p E A and qN is defined by qN(x*) 2 -- 

N - l p l ( x * )  2 § (1 - N-1)p(x*)  2, we find that limqN = p and qN can take the 

place of ql. However, we have to verify that each qN E A; the inequality Pl _< 

qN <-- 2pl is equivalent with p~/2 < q*N ~ P~, and this is a consequence of the 

corresponding inequalities on Pl and p. To verify that qN ~ 1 on M, we show 

that  in general qN (x) ~ max(p1 (x), p(x)). Prom Cauchy's inequality we conclude 

qN(x*) >_ N - l p l ( x  *) + (1 - N - 1 ) p ( x * ) .  The norm on the right is abbreviated by 

15. Then for all x in X* we have [x*(x)[ _< 15(x*)max(pl(x),p(x)), and therefore 
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qN(X) <_ max(pl(x),p(x)). Thus the sequence qN, which converges to p, remains 

in A, and each set V,~ is dense in A. Any norm in G n H serves for Lemma (b). 

We can now prove that  the elements of M are strongly exposed by the duality 

(or tangent) functionals, in the new larger norm I" 12- Since [mll --Iml2 -- 1 for 

each m, and each norm is F-smooth, while I" I1 -< I" 12, the functional J(m) has 
the same meaning for both norms. In particular J(m) has norm 1 for the smaller 

norm. Suppose now that Iz~12 < 1 and (J(m),z,~) ~ 1. Since J(m) C Y•  we 

see that  17r(m) + r(z~)l l  --4 2 and so by the properties of the norm I" 11 in X / Y ,  
lim~r(z~) = 7r(m) (and [Tr(z~)[1 _< 1). Thus z~ = m+y,~+w~, where Yn E Y and 

limwn = 0, whence ] m +  Ynl2 -< 1 + Iw~]2 = 1 + o(1) and finally limy,~ -- 0 (by 

the Lemma) or lim z~ = m. | 

3. In the case that  X isn't reflexive, we can choose Y of infinite codimension, 

and also nonreflexive, as follows. By a theorem of Pelczyfiski [6], X contains a 

bounded basic sequence (uk) such that f*(vk) = 1, f* being a certain bounded 

linear functional. The bounded sequence (vk) has no weak accumulation point. 

For if w were an accumulation point, it would be in the null-space of the biorthog- 

onal functionals for the basis; thus w = 0, contradicting i f (w) = 1. Let uk = v2k 

and Y = sp(uk). Then X / Y  has infinite dimension, since Y is in the null space 

of infinitely many of the biorthogonal functionals, and these are linearly inde- 

pendent elements of X*. Using the basic sequence (uk), we let Pk be the usual 

projections of Y and f~ = f* - P~f*. Then the f~ are uniformly bounded and 

we have 
f ; (u j )=O,  l < _ j < k ,  

.f~(uj)= l, l <_k < j. 

We introduce now the Baire null-space E, consisting of strictly increasing se- 

quences a = (nk)~ of natural numbers. We define h(a) = E~~ and recall 

the following property of h [5]. Whenever S = (Aj)~ is a sequence of probability 

measures in E, and the integrals f hdAj belong to a compact set in X, then the 

sequence S is uniformly tight: for each e > 0 there is a compact set K = K(e) 
such that ,Aj (K) > 1 - e for all j .  This is seen by applying the functionals f~ 

to the sequence f hdAj, and expressing the value as an integral f f~(h(a))dAj. 
We use the tightness to conclude that the closed convex hull of h(E) consists of 

integrals f hdA, where A is a probability measure in E. 

Let u be a continuous map of E onto a dense subset of M, and g -- u+h. (More 

details on u are presented below.) Now g has the same property as h, concerning 

tightness, because the addition of h to u doesn't affect the compactness. 

The norm [[. [[ is defined through its dual norm. We define p(x*) to be the 
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supremum of Ix*[ over g(E) and then []x*[I = p(x*) + [x*12, so that I[. l[ is indeed 

a dual norm. To see that it is LUR, suppose that [Ix*l[ = 1, [Ix*][ = 1, and 

lim [Ix* + x*[I -- 2. Since p is subadditive it follows that  

X* l i m l x * + x * 1 2 - I  n la - Ix*[2  = 0 .  

X* Let tn be defined by ] hi2 = t~lx*12. Then lim Itnx, + x*]2 - t lx,12 - Ix*12 = o 
* = X * .  and so l imtnx* = x*. Since Iix*]] = Iix*II = 1, limtn = 1 and l imx n 

We study the norm-attaining properties of the functionals Jim), m E M; 
here J(m) refers to the norm I" 12, but norm-attaining refers to the norm It" ]l 

defined above. Now h(~ ) C_ Y, and so Jim) vanishes on h(~), while u(~  ) is 

dense in M. Thus PiJim)) -- 1 and ]]J(m)]] -- 2. Moreover each element 

g(a) +u(a) = 2 u ( a ) + h ( a )  has H" I] -n~ at most 1, since Ix*(g(a))] <_ p(x*) and 

]x*(u(a)) I <_ Ix*12. The value of J(m) on this element is 2(g(m), u(a)) (because 

h(~  ) C_ Y); thus Jim) attains its norm if m = uia ) for some a, i.e. m E u(Z). 

We shall now embark on proving the converse implication, making critical use of 

the special property of h. 

First of all, we can find the unit ball of ]I" I] from the bipolar theorem. It 

consists of the closure of sums w + z where w E co(4-g(~)) and ]z]2 <_ 1. Suppose 

wn + zn is a convergent sequence of such sums and that  J(m) tends to 2 on 

this sequence. Then (J(m),zn) ~ 1 so that  zn --+ m. Therefore w = limw,~ 

exists and (g(m),w)  -- 1. The value of J(m) at g(a) is (J(m), u(a)) and this is 

at least 1/2 because M has diameter < 1/2. Each wn is iformally) an integral 

f g(a)dAn, where An is a signed measure of variation at most 1. Our observation 

on (J(m),g(a)) implies that  the negative variation of A,~ must tend to 0, i.e. 

A,~(E) --+ 1. Thus we can replace An by a probability measure in the following. 

Since limwn exists we see that the sequence (,~n) is uniformly tight, and has a 

limit A, concentrated in Z. But then w -- f g(a)dA, and (J(m), g(a)) must attain 

the value 1 on E, i.e. m E u(~]). Thus we have found that  J(m) is in NA for the 

norm ]1-I] if and only if m E u(~).  

4. The.Hilbert  cube Q contains a nowhere dense, compact subset Q1, home- 

omorphic to Q itself. Let Q2 be a subset of C[0, 1] defined as follows: v E Q2 

i f 0  < v < 1 and Iv(s)-v(t) l  _< I s - t I ,  0_< s < t < 1. Let A' be the ana- 

lytic subset of Q2, consisting of functions having an irrational zero. We treat  Q2 

as a closed subset of Q1; this is possible for any compact metric space. Then  

B -- ,4' U (Q\Q2) and so B = u(E) with a continuous mapping u of E; clearly B 

is dense in Q. We accept for a moment that A ~ reduces any analytic set A by a 

continuous map r into Q2. The mapping ~0 defined by ~(t) =- 1/2.  J ( r  then 
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has the property that  ~o-I(NA) = ~- I (NA1)  = `4. In this assertion N A  and 

NA1 refer to the norm I[" I[, while g refers to the norm I" [2. 

To explain the point left open about A', let N be a Polish space of diameter 

< 1, let A be analytic in N, and A = O(I), I the set of irrationals in (0, 1). We 

then define v(x, t) -~ 1/2 inf{d(x, O(s)) + I t -  s I : s e I}.  Then the partial function 

v(., t) belongs to Q2 for every x in N, and v(-, t) belongs to A ~ - -  that  is, vanishes 

at an irrational - -  if and only if x E ,4. Moreover, v(x, t) is Lipschitz-continuous 

in the variable x. This is the map r on N into Q2. 
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